A Specht Filtration of the Permutation Module over KLR Algebras

Tao Qin

University of Sydney

June 2025

1/11

KLR Algebras

Definition [KL09, Rou08]

Fix $\alpha \in Q^+$ such that $\operatorname{ht}(\alpha) = n$, the KLR algebra R_α is a **k**-algebra with generators: $e(\mathbb{i}), y_k, \psi_j$ subject to the following relations: $(1 \le k \le n, 1 \le j < n \text{ and } \mathbb{i} \in I^\alpha)$

$$e(\mathring{\mathfrak{l}})e(\mathring{\mathfrak{j}}) = \delta_{\mathring{\mathfrak{l}},\mathring{\mathfrak{j}}}e(\mathring{\mathfrak{l}}), \sum_{\mathring{\mathfrak{l}}\in I^{lpha}}e(\mathring{\mathfrak{l}}) = 1$$
 (1)

$$y_r e(\mathring{\mathbf{i}}) = e(\mathring{\mathbf{i}}) y_r, \psi_r e(\mathring{\mathbf{i}}) = e(\sigma_r \mathring{\mathbf{i}}) \psi_r$$
 (2)

$$y_r y_s = y_s y_r, \psi_r \psi_s = \psi_s \psi_r \quad \text{if } |r - s| > 1$$
 (3)

$$\psi_r y_s = y_s \psi_r \quad \text{if } s \neq r, r+1 \tag{4}$$

$$\psi_r y_{r+1} e(\mathring{\mathbf{n}}) = (y_r \psi_r + \delta_{\mathring{\mathbf{n}}_r, \mathring{\mathbf{n}}_{r+1}}) e(\mathring{\mathbf{n}})$$
(5)

$$y_{r+1}\psi_r e(\mathfrak{i}) = (\psi_r y_r + \delta_{\mathfrak{i}_r, \mathfrak{i}_{r+1}}) e(\mathfrak{i})$$
(6)

$$\psi_r^2 e(\hat{\mathbf{n}}) = Q_{\hat{\mathbf{n}}_r, \hat{\mathbf{n}}_{r+1}}(y_r, y_{r+1}) e(\hat{\mathbf{n}})$$

$$\tag{7}$$

$$\psi_{r}\psi_{r+1}\psi_{r}e(\mathring{\mathbf{i}}) = \psi_{r+1}\psi_{r}\psi_{r+1}e(\mathring{\mathbf{i}}) + Q_{\mathring{\mathbf{i}}_{r},\mathring{\mathbf{i}}_{r+1},\mathring{\mathbf{i}}_{r+2}}(y_{r}, y_{r+1}, y_{r+2})e(\mathring{\mathbf{i}})$$
(8)

Cyclotomic KLR algebra

Given $\Lambda \in P^+$, the *cyclotomic KLR algebra* R_{α}^{Λ} is defined as the quotient of R_{α} by the relations

$$y_1^{\langle \Lambda, \, \alpha_{\hat{\mathbb{I}}_1} \rangle} \, e(\hat{\mathbb{I}}) = 0, \quad \hat{\mathbb{I}} \in I^{\alpha}.$$

3/11

Tao Qin (USyd) A Specht Filtration June 2025

Important Results

- KLR algebras categorify the negative part of quantum groups.
 [KL09, Rou08]
- Cyclotomic KLR algebras categorify highest weight modules $V(\Lambda)$. [KK12]
- In type $A_{e-1}^{(1)}$, cyclotomic KLR algebras are isomorphic to Ariki–Koike algebras. [BK09]
- ullet Cyclotomic KLR algebras of type $A_{e-1}^{(1)}$ are graded cellular. [HM10]
- ...and many more.

Permutation Modules

Fix a dominant weight Λ and a partition $\lambda = (\lambda_1, \dots, \lambda_r)$. For each row of length λ_i , there is a unique one-dimensional irreducible R_{α_i} -module, denoted L_i , where $\alpha_i = \text{cont}(\lambda_i)$. The outer tensor product

$$L_1 \boxtimes L_2 \boxtimes \cdots \boxtimes L_r$$

is a module over $R_{\alpha_1} \otimes R_{\alpha_2} \otimes \cdots \otimes R_{\alpha_r}$. Since R_{α} is a free over this subalgebra, we define the *permutation module* M^{λ} by

$$M^{\lambda} := \operatorname{Ind}_{R_{\alpha_1} \otimes \cdots \otimes R_{\alpha_r}}^{R_{\alpha}} (L_1 \boxtimes L_2 \boxtimes \cdots \boxtimes L_r).$$

Theorem [KMR12]

The module M^{λ} has a **k**-basis indexed by all row-standard tableaux of shape λ .

5/11

Specht Modules

Theorem [KMR12]

The Specht module S^{λ} over the cyclotomic KLR algebra R^{Λ}_{α} is isomorphic to the quotient of the permutation module M^{λ} by the Garnir relations.

Example

Let $\lambda = (\mathbf{4},\mathbf{3},\mathbf{3},\mathbf{1})$ with Young diagram

Choose the Garnir node A = (2,2). Then the Garnir tableau G^A is

1	4	5	6	
2	3	7		
8	9	10		-
11				

Universal Construction

Theorem [KMR12]

The Specht module S^{λ} is isomorphic to $(R_{\alpha}/J^{\lambda})\langle \deg T^{\lambda} \rangle$ where J^{λ} is generated by the following relations:

- $e(j) \delta_{j,j\lambda}$ for all $j \in I^{\alpha}$.
- y_r for $r=1,\ldots,n$.
- ψ_r whenever r and r+1 appear in the same row of T^{λ} .
- g^A for each Garnir node $A \in [\lambda]$.

Remark

In our case, $g^A = \psi^{G^A}$ for each Garnir node A and Garnir tableau G^A .

Tao Qin (USyd) A Specht Filtration June 2025

Specht Filtration?

We seek a filtration

$$M^{\lambda} = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_k \supseteq M_{k+1} = 0$$

such that each quotient M_i/M_{i+1} is isomorphic to a Specht module S^{μ_i} (as an R_{α} -module) with $\mu_0 = \lambda$.

Warning

Such a filtration does not always exist!

8/11

Tao Qin (USyd) A Specht Filtration June 2025

Generalized Specht Filtration in Type A_{∞}

Let $\lambda = (\lambda_1, \dots, \lambda_k)$ and, for each $1 \le i \le k - 1$, fix a Garnir relation ψ^{A_i} between rows i and i + 1.

Theorem [Q.25]

For $1 \leq i \leq k-1$, let M_i be the R_{α} -submodule of M^{λ} generated by

$$\langle \psi^{A_i}, \ldots, \psi^{A_{k-1}} \rangle.$$

Then

$$M^{\lambda} = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{k-1} \supseteq M_k = 0$$

is a filtration such that for each $1 \leq i \leq k-1$, there is an exact sequence

$$0 \rightarrow S^{\mu_{i,\,k_{i}}} \rightarrow \cdots \rightarrow S^{\mu_{i,\,1}} \twoheadrightarrow M_{i}/M_{i+1} \rightarrow 0,$$

where each $S^{\mu_{i,j}}$ is a Specht module over $R_{\alpha}^{\Lambda(i)}$ and $\mu_{i,j} \geq \mu_{i,j+1}$ for all admissible i, j.

Hook Partition Case in Type $A_{n-1}^{(1)}$

In the hook partition case, the same construction yields a Specht filtration.

Example

Let $\lambda = (4, 1^3)$ and $\Lambda = \Lambda_0$ in type $A_5^{(1)}$. Then there is a Specht filtration

$$M^{\lambda}=M_0\ \supsetneq\ M_1\ \supsetneq\ M_2\ \supsetneq\ M_3\ \supsetneq\ M_4\ \supsetneq\ 0$$

with

$$S^{\lambda_i} \cong M_i/M_{i+1}, \quad \lambda_0 = \lambda, \ldots, \lambda_4,$$

where
$$\lambda=\lambda_0$$
:
$$\begin{vmatrix} 0&1&2&3\\4&&&&&\\3&&&&&\\2&&&&&\\ \end{vmatrix} \lambda_1$$
:
$$\begin{vmatrix} 4&0&1&2&3\\3&&&&\\2&&&&\\ \end{vmatrix}$$

$$\lambda_1$$
: $\begin{bmatrix} 4 & 0 & 1 & 2 & 3 \\ 3 & & & & \\ 2 & & & & \end{bmatrix}$

$$\lambda_2$$
: $\begin{pmatrix} 0 & 1 & 2 & 3 \end{pmatrix}$

$$\begin{pmatrix} 3 & 4 \\ 2 & \end{pmatrix} \lambda_4: \begin{pmatrix} 0 & 1 & 2 & 3 & | & 4 & | & 2 & 3 \end{pmatrix}$$

Tao Qin (USyd) A Specht Filtration June 2025 10 / 11

End

Thank you!

Jonathan Brundan and Alexander Kleshchev.

Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras. *Inventiones mathematicae*, 178(3):451–484, June 2009.

Jun Hu and Andrew Mathas.

Graded cellular bases for the cyclotomic Khovanov–Lauda–Rouquier algebras of type A.

Advances in Mathematics, 225(2):598-642, 2010.

🔋 Seok-Jin Kang and Masaki Kashiwara.

Categorification of highest weight modules via khovanov-lauda-rouquier algebras.

Inventiones mathematicae, 190(3):699-742, February 2012.

Mikhail Khovanov and Aaron Lauda.

A diagrammatic approach to categorification of quantum groups i. *Representation Theory of the American Mathematical Society*, 13(14):309–347, July 2009.

Alexander S. Kleshchev, Andrew Mathas, and Arun Ram.
Universal graded specht modules for cyclotomic hecke algebras.

Proceedings of the London Mathematical Society, 105(6):1245–1289, June 2012.

Raphael Rouquier.

2-kac-moody algebras, 2008.

11/11